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Abstract. The purpose of this paper is to investigate variational inequalities, fixed point problems and gen-
eralized mixed equilibrium problems. An extragradient iterative algorithm is investigated in the framework
of Hilbert spaces. Weak convergence theorems for common solutions are established.

1. Introduction

In real world, there are many problems are reduced to finding solutions of equilibrium problems, which
cover variational inequalities, fixed point problems, saddle point problems, complementarity problems
as special cases. Equilibrium problem, which was first introduced by Fan [1] and further studied by
Blum and Oettli [2], has been extensively studied as an effective and powerful tool for a wide class of
real world problems which arise in economics, finance, image reconstruction, ecology, transportation,
network and related optimization problems; see [2-17] and the references therein. For solving solutions of
variational inequalities, projection algorithms are efficient. However, they request the involving monotone
mappings are inverse-strongly monotone; [18]. To relax the restriction on inverse-strongly monotone,
extragradient algorithms, which have been extensively studied [19-23], are considered for a variational
inequality involving a continuous and monotone mapping in this paper.

The organization of this paper is as follows. In Section 2, we provide some necessary preliminaries
which play an important role. In Section 3, an extragradient projection algorithm is introduced and the
convergence analysis is also given. A weak convergence theorem is established in the framework of Hilbert
spaces. Some subresults are also provided as corollaries of the main results in this section.

2. Preliminaries

From now on, we always assume that H is a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖,
and C is a nonempty, closed, and convex subset of H. R is denoted by the set of real numbers. Let F be a
bifunction of C × C into R. Consider the problem: find a p such that

F(p, y) ≥ 0, ∀y ∈ C. (2.1)
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In this paper, the solution set of the problem is denoted by EP(F), i.e.,

EP(F) = {p ∈ C : F(p, y) ≥ 0, ∀y ∈ C}.

The above problem is first introduced by Ky Fan [1]. In the sense of Blum and Oettli [2], the Ky Fan
inequality is also called an equilibrium problem.

Recently, the ”so-called” generalized mixed equilibrium problem has been investigated by many authors:
The generalized mixed equilibrium problem is to find p ∈ C such that

F(p, y) + 〈Ap, y − p〉 + ϕ(y) − ϕ(p) ≥ 0, ∀y ∈ C, (2.2)

where ϕ : C→ R is a real valued function and A : C→ E∗ is mapping. We use GMEP(F,A, ϕ) to denote the
solution set of the equilibrium problem. That is,

GMEP(F,A, ϕ) := {p ∈ C : F(p, y) + 〈Ap, y − p〉 + ϕ(y) − ϕ(z) ≥ 0, ∀y ∈ C}.

Next, we give some special cases:
If A = 0, then the problem (2.2) is equivalent to find p ∈ C such that

F(p, y) + ϕ(y) − ϕ(z) ≥ 0, ∀y ∈ C, (2.3)

which is called the mixed equilibrium problem.
If F = 0, then the problem (2.2) is equivalent to find p ∈ C such that

〈Ap, y − p〉 + ϕ(y) − ϕ(z) ≥ 0, ∀y ∈ C, (2.4)

which is called the mixed variational inequality of Browder type.
If ϕ = 0, then the problem (2.2) is equivalent to find p ∈ C such that

F(p, y) + 〈Ap, y − p〉 ≥ 0, ∀y ∈ C, (2.5)

which is called the generalized equilibrium problem.
If A = 0 and ϕ = 0, then the problem (2.2) is equivalent to (2.1).
Let F(x, y) = 〈Ax, y − x〉, ∀x, y ∈ C. we see that the problem (2.1) is reduced to the following classical

variational inequality. Find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (2.6)

It is known that x ∈ C is a solution to (2.6) if and only if x is a fixed point of the mapping PC(I − ρA), where
ρ > 0 is a constant, and I is the identity mapping.

For solving the above equilibrium problems, let us assume that the bifunction F : C × C → R satisfies
the following conditions:

(A1) F(x, x) = 0,∀x ∈ C;

(A2) F is monotone, i.e., F(x, y) + F(y, x) ≤ 0,∀x, y ∈ C;

(A3)
lim sup

t↓0
F(tz + (1 − t)x, y) ≤ F(x, y),∀x, y, z ∈ C;

(A4) for each x ∈ C, y 7→ F(x, y) is convex and weakly lower semi-continuous.

Let T : C → C be a mapping. In this paper, we use F(T) to stand for the set of fixed points. Recall that
the mapping T is said to be nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C.
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T is said to be κ-strictly pseudocontractive if there exits a constant κ ∈ [0, 1) such that

‖Tx − Ty‖2 ≤ ‖x − y‖2 + κ‖(I − T)x − (I − T)y‖2, ∀x, y ∈ C.

It is clear the class of κ-strictly pseudocontractive include the class of nonexpansive mappings as a special
case.

Let A : C→ H be a mapping. Recall that A is said to be monotone if

〈Ax − Ay, x − y〉 ≥ 0, ∀x, y ∈ C.

A is said to be κ-inverse strongly monotone if there exits a constant α > 0 such that

〈Ax − Ay, x − y〉 ≥ κ‖Ax − Ay‖2, ∀x, y ∈ C.

It is clear that κ-inverse strongly monotone is monotone and Lipschitiz continuous.
A set-valued mapping T : H → 2H is said to be monotone if, for all x, y ∈ H, f ∈ Tx and 1 ∈ Ty

imply 〈x− y, f − 1〉 ≥ 0. A monotone mapping T : H→ 2H is maximal if the graph G(T) of T is not properly
contained in the graph of any other monotone mapping. It is known that a monotone mapping T is maximal
if and only if, for any (x, f ) ∈ H×H, 〈x−y, f −1〉 ≥ 0 for all (y, 1) ∈ G(T) implies f ∈ Tx. The class of monotone
operators is one of the most important classes of operators. Within the past several decades, many authors
have been devoting to the studies on the existence and convergence of zero points for maximal monotone
operators.

In order to prove our main results, we need the following lemmas.

Lemma 2.1 [24] Let C be a nonempty, closed, and convex subset of H, and S : C → C a strictly pseudocontractive
mapping. If {xn} is a sequence in C such that xn ⇀ x, and limn→∞ ‖xn − Sxn‖ = 0, then x = Sx.

Lemma 2.2. [24] Let S : C→ C be a κ-strictly pseudocontractive mapping. Define St : C→ C by Stx = tx+(1−t)Sx
for each x ∈ C. Then, as t ∈ [κ, 1), St is nonexpansive such that F(St) = F(S).

Lemma 2.3 [25] Let {an}, {bn}, and {cn} be three nonnegative sequences satisfying the following condition:

an+1 ≤ (1 + bn)an + cn, ∀n ≥ n0,

where n0 is some nonnegative integer,
∑
∞

n=1 bn < ∞ and
∑
∞

n=1 cn < ∞. Then the limit limn→∞ an exists.

Lemma 2.4. [2] Let C be a nonempty closed convex subset of H, and F : C×C→ R a bifunction satisfying (A1)-(A4).
Then, for any r > 0 and x ∈ H, there exists z ∈ C such that

F(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Further, define

Trx = {z ∈ C : F(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

for all r > 0 and x ∈ H. Then, the following hold:

(a) Tr is single-valued;

(b) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx − Try‖2 ≤ 〈Trx − Try, x − y〉;

(c) F(Tr) = EP(F);

(d) EP(F) is closed and convex.
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Lemma 2.5. [26] Let {an}
∞

n=1 be real numbers in [0, 1] such that
∑
∞

n=1 an = 1. Then we have the following.

‖

∞∑
i=1

aixi‖
2
≤

∞∑
i=1

ai‖xi‖
2,

for any given bounded sequence {xn}
∞

n=1 in H.

Lemma 2.6. [27] Let A be a monotone mapping of C into H and NCv the normal cone to C at v ∈ C, i.e.,

NCv = {w ∈ H : 〈v − u,w〉 ≥ 0, ∀u ∈ C}

and define a mapping T on C by

Tv =

Av + NCv, v ∈ C
∅, v < C.

Then T is maximal monotone and 0 ∈ Tv if and only if 〈Av,u − v〉 ≥ 0 for all u ∈ C.

Lemma 2.7. [28] Let 0 < p ≤ tn ≤ q < 1 for all n ≥ 1. Suppose that {xn}, and {yn} are sequences in H such that

lim sup
n→∞

‖xn‖ ≤ d, lim sup
n→∞

‖yn‖ ≤ d

and
lim
n→∞
‖tnxn + (1 − tn)yn‖ = d

hold for some r ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

3. Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let A : C → H be a L-Lipschitz
continuous and monotone mapping and let T : C → C be a κ-strictly psuedocontractive mapping. Let N ≥ 1 be
some positive integer. Let Fm be a bifunction from C × C to R which satisfies (A1)-(A4). Let ϕm : C → R be a
lower semicontinuous and convex function and let Bm : C → H be a continuous and monotone mapping for each
1 ≤ m ≤ N. Assume that F := ∩N

m=1GMEP(Fm,Bm, ϕm) ∩ F(T) ∩ VI(C,A) , ∅. Let {λn}, {rn,m} be positive real
number sequences. Let {αn}, {α′n}, {α′′n }, {βn} and {δn,m} be real number sequences in (0, 1). Let {xn} be a sequence
generated in the following process:

x1 ∈ H,
Fm(zn,m, z) + 〈Bmzn,m, z − zn,m〉 + ϕm(z) − ϕm(zn,m) + 1

rn,m
〈z − zn,m, zn,m − xn〉 ≥ 0, ∀z ∈ C,

yn = ProjC(
∑N

m=1 δn,mzn,m − λnA
∑N

m=1 δn,mzn,m),
xn+1 = αnxn + α′n(βnProjC(

∑N
m=1 δn,mzn,m − λnAyn) + (1 − βn)TProjC(

∑N
m=1 δn,mzn,m − λnAyn)) + α′′n en,

where {en} is a bounded sequence in C. Assume that {αn}, {α′n}, {α′′n }, {βn}, {δn,m}, {λn}, {rn,m} satisfy the following
restrictions:

(1) αn + α′n + α′′n = 1, 0 < a ≤ αn ≤ b < 1;

(2) κ ≤ βn ≤ c < 1

(3)
∑
∞

m=1 δn,m = 1, and 0 < d ≤ δn,m ≤ 1;

(4) lim infn→∞ rn,m > 0,
∑
∞

n=1 |α
′′
n | < ∞ and m1 ≤ λn ≤ m2, where m1,m2 ∈ (0, 1/L).
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Then {xn} converges weakly to some point x̄ ∈ F .

Proof. First, we prove that the sequence {xn} is bounded. Define Gm(p, y) = Fm(p, y)+〈Bmp, y−p〉+ϕ(y)−ϕ(p),
∀p, y ∈ C. It is easy to see that the bifunction G satisfies the conditions (A1)-(A4). Therefore, generalized
mixed equilibrium problem is equivalent to the following equilibrium problem: find p ∈ C such that
Gm(p, y) ≥ 0, ∀y ∈ C. Fix p ∈ F and set un = ProjC(

∑N
m=1 δn,mzn,m − λnAyn) and vn =

∑N
m=1 δn,mzn,m. It follows

that yn = ProjC(vn − λnAvn). Hence, we have

‖un − p‖2 ≤ ‖vn − λnAyn − p‖2 − ‖vn − λnAyn − un‖
2

= ‖vn − p‖2 − ‖vn − un‖
2 + 2λn(〈Ayn − Ap, p − yn〉 + 〈Ap, p − yn〉

+ 〈Ayn, yn − un〉)

≤ ‖vn − p‖2 − ‖vn − yn‖
2
− ‖yn − un‖

2 + 2〈vn − λnAyn − yn,un − yn〉.

Since A is Lipschitz continuous, we have

〈vn − λnAyn − yn,un − yn〉 ≤ ‖vn − λnAyn − yn‖‖un − yn‖

≤ λnL‖vn − yn‖‖un − yn‖.

Hence, we have
‖un − p‖2 ≤ ‖vn − p‖2 + (λ2

nL2
− 1)‖vn − yn‖

2. (3.1)

Since Trn,m = {z ∈ C : Gm(z, y) + 1
r 〈y − z, z − x〉 ≥ 0,∀y ∈ C} is firmly nonexpansive, we have

‖vn − p‖2 ≤ ‖
N∑

m=1

δn,mzn,m − p‖2

≤

N∑
m=1

δn,m‖Trn,m xn − p‖2

≤ ‖xn − p‖2.

(3.2)

Substituting (3.2) into (3.1), we find

‖un − p‖2 ≤ ‖xn − p‖2 + (λ2
nL2
− 1)‖vn − yn‖

2.

Set Tn = βnI + (1 − βn)T. Using Lemma 2.2, we find that Tn is nonexpansive and F(Tn) = F(T). Hence, we
have

‖xn+1 − p‖2 ≤ αn‖xn − p‖2 + α′n‖Tnun − p‖2 + α′′n ‖en − p‖

≤ αn‖xn − p‖2 + α′n‖un − p‖2 + α′′n ‖en − p‖

≤ αn‖xn − p‖2 + α′n(‖xn − p‖2 + (λ2
nL2
− 1)‖vn − yn‖

2) + α′′n ‖en − p‖

≤ ‖xn − p‖2 + α′n(λ2
nL2
− 1)‖vn − yn‖

2 + α′′n ‖en − p‖

≤ ‖xn − p‖2 + α′′n ‖en − p‖.

(2.3)

Using Lemma 2.3., we see that the limn→∞ ‖xn − p‖ exists. This obtains that {xn} is bounded. Since {xn} is
bounded, we may assume that a subsequence {xni } of {xn} converges weakly to x̄. Using (3.3), we find that

βn(1 − λ2
nL2)‖vn − yn‖

2
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + α′′n ‖en − p‖.

It follows from the restrictions (2) and (4), we see that limn→∞ ‖vn − yn‖ = 0. Note that

‖yn − un‖ ≤ λL‖vn − yn‖.

It follows that limn→∞ ‖yn − un‖ = 0. This implies that

lim
n→∞
‖vn − un‖ = 0. (3.4)
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Using Lemma 2.4, we see that

‖zn,m − p‖2 = ‖Trn,m xn − Trn,m p‖2

≤ 〈Trn,m xn − Trn,m p, xn − p〉

=
1
2

(‖zn,m − p‖2 + ‖xn − p‖2 − ‖zn,m − xn‖
2).

It follows that
‖zn,m − p‖2 ≤ ‖xn − p‖2 − ‖zn,m − xn‖

2.

Since vn =
∑N

m=1 δn,mzn,m, where
∑N

m=1 δn,m = 1, we find that

‖vn − p‖2 ≤
N∑

m=1

δn,m‖zn,m − p‖2

≤ ‖xn − p‖2 −
N∑

m=1

δn,m‖zn,m − xn‖
2.

Since ‖ · ‖2 is convex, we see that

‖xn+1 − p‖2 ≤ αn‖xn − p‖2 + α′n‖Tnun − p‖2 + α′′n ‖en − p‖

≤ αn‖xn − p‖2 + α′n‖un − p‖2 + α′′n ‖en − p‖

≤ αn‖xn − p‖2 + α′n‖vn − p‖2 + α′′n ‖en − p‖

≤ ‖xn − p‖2 − α′n
N∑

m=1

δn,m‖zn,m − xn‖
2 + α′′n ‖en − p‖.

This implies that
(1 − αn)δn,m‖zn,m − xn‖

2
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + α′′n ‖en − p‖.

It follows that
lim
n→∞
‖zn,m − xn‖ = 0. (2.5)

Based on the mapping A, define a maximal monotone mapping S by:

Sx =

Ax + NCx, x ∈ C,
∅, x < C.

For any given (x, y) ∈ G(S), we have y − Ax ∈ NCx. It follows that

〈y − Ax, x − z〉 ≥ 0, ∀z ∈ C.

Using the definition of un, we have

〈x − un,
un − vn

λn
+ Ayn〉 ≥ 0.

Since A is monotone, we have

〈x − uni , y〉 ≥ 〈x − uni ,Ax〉

≥ 〈x − uni ,Ax〉 − 〈x − uni ,Ayni +
uni − vni

λni

〉

= 〈x − uni ,Ax − Auni〉 + 〈x − uni ,Auni − Ayni〉 − 〈x − uni ,
uni − vni

λni

〉

≥ 〈x − uni ,Auni − Ayni〉 − 〈x − uni ,
uni − vni

λni

〉.
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Since ‖vn − xn‖ ≤
∑N

m=1 δn,m‖zn,m − xn‖, We find from (3.5) that limn→∞ ‖vn − xn‖ = 0. Note the fact that

‖un − xn‖ ≤ ‖un − vn‖ + ‖vn − xn‖.

It follows that
lim
n→∞
‖un − xn‖ = 0. (3.6)

Since {xni } converges weakly to x̄, we find that uni ⇀ x̄. It follows that 〈x − ξ, y〉 ≥ 0. Since S is maximal
monotone, we find that 0 ∈ Sx̄. Using Lemma 2.6, we find that ξ ∈ VI(C,A).

Next, we show that x̄ ∈ ∩N
m=1GMEP(Fm,Bm, ϕm). In view of (3.5), we see that {zni,m} converges weakly to

x̄ for each m ≥ 1. Using the fact that zn,m = Trn,m xn, we have

Fm(zn,m, z) + 〈Bmzn,m, z − zn,m〉 + ϕ(z) − ϕ(zn,m) +
1

rn,m
〈z − zn,m, zn,m − xn〉 ≥ 0, ∀z ∈ C.

Using the assumption (A2), we see that

〈z − zni,m,
zni,m − xni

rni,m
〉 ≥ Gm(z, zni,m), ∀z ∈ C.

Using the assumption (A4), we see from (3.5) that Gm(z, x̄) ≤ 0, ∀z ∈ C. For tm with 0 < tm ≤ 1, and z ∈ C, set

ztm = (1 − tm)x̄ + tmz, 1 ≤ m ≤ N.

Since ztm ∈ C, we find that Gm(ztm , x̄) ≤ 0. Since

0 = Gm(ztm , ztm ) ≤ tmGm(ztm , z) + (1 − tm)Gm(ztm , x̄) ≤ tmGm(ztm , z),

we see that Gm(ztm , z) ≥ 0, ∀z ∈ C. Letting tm ↓ 0, one sees that Gm(x̄, z) ≥ 0, ∀z ∈ C. This implies that
x̄ ∈ GMEP(Fm,Bm, ϕm) for each m ≥ 1. This proves that x̄ ∈ ∩N

m=1GMEP(Fm,Bm, ϕm).
Now, we are in a position to show that x̄ is a fixed point of T. Since limn→∞ ‖xn − p‖ exists, we put

limn→∞ ‖xn − p‖ = d > 0. It follows that

lim
n→∞
‖xn+1 − p‖ = lim

n→∞
‖αn

(
xn − p + α′′n (en − Tnun)

)
+ (1 − αn)

(
Tnun − p + α′′n (en − Tnun)

)
‖ = d.

Note that
lim sup

n→∞
‖xn − p + α′′n (en − Tnun)‖ ≤ lim sup

n→∞
‖xn − p‖ + lim sup

n→∞
α′′n ‖en − Tnun‖

≤ d

and
lim sup

n→∞
‖Tnun − p + α′′n (en − Tnun)‖ ≤ lim sup

n→∞
‖Tnun − p‖ + lim sup

n→∞
α′′n ‖en − Tnun‖

≤ lim sup
n→∞

‖un − p‖ + lim sup
n→∞

α′′n ‖en − Tnun‖

≤ d.

Using Lemma 2.7, we find
lim
n→∞
‖xn − Tnun‖ = 0. (3.7)

On the other hand, we have

‖Tnxn − xn‖ ≤ ‖Tnxn − Tnun‖ + ‖Tnun − xn‖

≤ ‖xn − un‖ + ‖Tnun − xn‖.

It follows from (3.6) and (3.7) that
lim
n→∞
‖xn − Tnxn‖ = 0. (3.8)
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This implies from (3.8) that limn→∞ ‖xn − Txn‖ = 0. Using Lemma 2.1, we find that x̄ ∈ F(T). Let {xn j } be
another subsequence of {xn} converging weakly to ξ, where ξ , x̄. Similarly, we find that ξ ∈ F . Using
Opial’s condition, we find that

d = lim inf
i→∞

‖xni − x̄‖ < lim inf
i→∞

‖xni − ξ‖

= lim inf
j→∞

‖x j − ξ‖ < lim inf
j→∞

‖x j − x̄‖ = d.

This is a contradiction. Hence x̄ = ξ. This completes the proof.

If T is nonexpansive, we have the following.

Corollary 3.2. Let C be a nonempty closed convex subset of a Hilbert space H. Let A : C → H be a L-Lipschitz
continuous and monotone mapping and let T : C → C be a nonexpansive mapping. Let N ≥ 1 be some positive
integer. Let Fm be a bifunction from C×C toRwhich satisfies (A1)-(A4). Let ϕm : C→ R be a lower semicontinuous
and convex function and let Bm : C→ H be a continuous and monotone mapping for each 1 ≤ m ≤ N. Assume that
F := ∩N

m=1GMEP(Fm,Bm, ϕm) ∩ F(T) ∩ VI(C,A) , ∅. Let {λn}, {rn,m} be positive real number sequences. Let {αn},
{α′n}, {α′′n } and {δn,m} be real number sequences in (0, 1). Let {xn} be a sequence generated in the following process:

x1 ∈ H,
Fm(zn,m, z) + 〈Bmzn,m, z − zn,m〉 + ϕm(z) − ϕm(zn,m) + 1

rn,m
〈z − zn,m, zn,m − xn〉 ≥ 0, ∀z ∈ C,

yn = ProjC(
∑N

m=1 δn,mzn,m − λnA
∑N

m=1 δn,mzn,m),
xn+1 = αnxn + α′nTProjC(

∑N
m=1 δn,mzn,m − λnAyn) + α′′n en,

where {en} is a bounded sequence in C. Assume that {αn}, {α′n}, {α′′n }, {δn,m}, {λn}, {rn,m} satisfy the following
restrictions:

(1) αn + α′n + α′′n = 1, 0 < a ≤ αn ≤ b < 1;

(2)
∑
∞

m=1 δn,m = 1, and 0 < d ≤ δn,m ≤ 1;

(3) lim infn→∞ rn,m > 0,
∑
∞

n=1 |α
′′
n | < ∞ and m1 ≤ λn ≤ m2, where m1,m2 ∈ (0, 1/L).

Then {xn} converges weakly to some point x̄ ∈ F .

If Bm = 0, we find the following result on mixed equilibrium problem.

Corollary 3.3. Let C be a nonempty closed convex subset of a Hilbert space H. Let A : C → H be a L-Lipschitz
continuous and monotone mapping and let T : C→ C be a κ-strictly psuedocontractive mapping. Let N ≥ 1 be some
positive integer. Let Fm be a bifunction from C × C to R which satisfies (A1)-(A4). Let ϕm : C → R be a lower
semicontinuous and convex function for each 1 ≤ m ≤ N. Assume thatF := ∩N

m=1GMEP(Fm, ϕm)∩F(T)∩VI(C,A) ,
∅. Let {λn}, {rn,m} be positive real number sequences. Let {αn}, {α′n}, {α′′n }, {βn} and {δn,m} be real number sequences in
(0, 1). Let {xn} be a sequence generated in the following process:

x1 ∈ H,
yn = ProjC(

∑N
m=1 δn,mzn,m − λnA

∑N
m=1 δn,mzn,m),

xn+1 = αnxn + α′n(βnProjC(
∑N

m=1 δn,mzn,m − λnAyn) + (1 − βn)TProjC(
∑N

m=1 δn,mzn,m − λnAyn)) + α′′n en,

where {en} is a bounded sequence in C and zn,m is such that

Fm(zn,m, z) + ϕm(z) − ϕm(zn,m) +
1

rn,m
〈z − zn,m, zn,m − xn〉 ≥ 0, ∀z ∈ C.

Assume that {αn}, {α′n}, {α′′n }, {βn}, {δn,m}, {λn}, {rn,m} satisfy the following restrictions:

(1) αn + α′n + α′′n = 1, 0 < a ≤ αn ≤ b < 1;
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(2) κ ≤ βn ≤ c < 1

(3)
∑
∞

m=1 δn,m = 1, and 0 < d ≤ δn,m ≤ 1;

(4) lim infn→∞ rn,m > 0,
∑
∞

n=1 |α
′′
n | < ∞ and m1 ≤ λn ≤ m2, where m1,m2 ∈ (0, 1/L).

Then {xn} converges weakly to some point x̄ ∈ F .

If A = 0, we find from Theorem 3.1 the following result.

Corollary 3.4. Let C be a nonempty closed convex subset of a Hilbert space H. Let A : C → H be a L-Lipschitz
continuous and monotone mapping and let T : C → C be a κ-strictly psuedocontractive mapping. Let N ≥ 1 be
some positive integer. Let Fm be a bifunction from C × C to R which satisfies (A1)-(A4). Let ϕm : C → R be a
lower semicontinuous and convex function and let Bm : C → H be a continuous and monotone mapping for each
1 ≤ m ≤ N. Assume that F := ∩N

m=1GMEP(Fm,Bm, ϕm) ∩ F(T) ∩ VI(C,A) , ∅. Let {λn}, {rn,m} be positive real
number sequences. Let {αn}, {α′n}, {α′′n }, {βn} and {δn,m} be real number sequences in (0, 1). Let {xn} be a sequence
generated in the following process:

x1 ∈ H,
Fm(zn,m, z) + 〈Bmzn,m, z − zn,m〉 + ϕm(z) − ϕm(zn,m) + 1

rn,m
〈z − zn,m, zn,m − xn〉 ≥ 0, ∀z ∈ C,

yn =
∑N

m=1 δn,mzn,m,

xn+1 = αnxn + α′n(βnProjC(
∑N

m=1 δn,mzn,m − λnAyn) + (1 − βn)TProjC(
∑N

m=1 δn,mzn,m − λnAyn)) + α′′n en,

where {en} is a bounded sequence in C. Assume that {αn}, {α′n}, {α′′n }, {βn}, {δn,m}, {λn}, {rn,m} satisfy the following
restrictions:

(1) αn + α′n + α′′n = 1, 0 < a ≤ αn ≤ b < 1;

(2) κ ≤ βn ≤ c < 1

(3)
∑
∞

m=1 δn,m = 1, and 0 < d ≤ δn,m ≤ 1;

(4) lim infn→∞ rn,m > 0,
∑
∞

n=1 |α
′′
n | < ∞.

Then {xn} converges weakly to some point x̄ ∈ F .
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